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 21.1 Introduction to O-O Representation and Design 

 Java has its roots in several languages and their underlying ways of thinking 
about computer programming. Its syntax resembles C++, its semantics 
reflects Objective-C, and its philosophy of development owes a 
fundamental debt to Smalltalk. However, over the years, Java has matured 
into its own language. This chapter traces the roots of Java to the ideas of 
object-oriented programming, a way of thinking about programming, 
program structure, and the process of development that it shares with 
these earlier languages.  

The origins of object-oriented programming are within the artificial 
intelligence research community. The first implementation of this 
programming paradigm was built at Xerox’s Palo Alto Research Center 
with the creation of Smalltalk. The first release was Smalltalk-72 (in 1972). 
Object-orientation was a critical component of the early AI research 
community’s search for representational techniques that supported 
intelligent activity both in humans and machines. The 1960s and 1970s saw 
the AI community develop semantic nets, frames, flavors, as well as other 
techniques, all of which had a role in the eventual development of object 
systems (see Luger 2009, Section 7.1). 
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This chapter will quickly cover the fundamentals of Java, but its purpose is 
not to teach the basics of Java programming, nor to provide a 
comprehensive guide of Java features. This chapter builds a conceptual 
framework with which to understand and reason about Java-style problem 
solving, as well as to set the stage for subsequent chapters. 

             21.2 Object-Orientation 

 In previous sections of this book, we discussed functional and declarative 
(or logic-based) programming as implemented in Lisp and Prolog 
respectively. Each of these programming models has its strengths and clear 
advantages for certain tasks. The underlying focus of OOP and Java is the 
desire to model a problem as a composition of pieces that interact with one 
another in meaningful ways. Among the goals of this approach is helping 
us to think about programs in terms of the semantics of the problem 
domain, rather than of the underlying computer; supporting incremental 
prototyping by letting us build and test programs one object at a time; and 
the ability to create software by assembling prefabricated parts, much like 
manufacturers create goods from raw inputs. Indeed, OOP grew out of a 
need for a different software representation and development process 
altogether. 

The key to OOP is its representational flexibility supporting the 
decomposition of a problem into components for which one can define 
behaviors and characteristics: A typical car has an engine that transfers 
power to the wheels, both of which are attached to a frame and enclosed in 
a body. Each of these components can be further broken down: an engine 
consists of valves, pistons, and so forth. We can proceed down to some 
atomic level, at which components are no longer composed of some 
fundamentally simpler part. This introduces the idea of abstraction, 
whereby we regard some composition of pieces as a single thing; for 
example, a car. In Java, these pieces are called objects. One of the central 
ideas of object-orientation is that these objects are complete definitions of 
their “real-world” correlates. They define both the data and behaviors 
needed to model those objects. 

A major consequence of OOP is the goal of creating general, reusable 
objects that can be used to build different programs, much like how a 9-
volt battery from any vendor can be plugged into thousands of entirely 
different devices. This requires separating the definition of what an object 
does from the implementation of how it does it, just as the battery’s 
specification of its voltage frees its users from worrying about the number 
of cells or the chemical reactions inside it. This idea has been very 
important to the growth of Java.   

Originally, the Java language started out small, with only a few constructs 
more than languages like C. However, as it has found use, Java has grown 
through the efforts of developers to create packages of reusable objects to 
manage everything from user interface development, the creation of data 
structures, to network communication. In fact, if we look closely at Java, it 
retains this flavor of a small kernal that is enhanced by numerous reusable 
packages the programmer can draw upon in their work. To support this 
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growth, Java has provided rich, standardized mechanisms for creating and 
packaging reusable software components that not only support hiding 
implementation details behind object interfaces, but also give us a rich 
language of types, variable scoping, and inheritance to manage these 
interface definitions. 

             21.3 Classes and Encapsulation 

 The first step in building reusable composite parts is the ability to describe 
their composition and behaviors. Java uses the notion of classes to describe 
objects. A class is simply a blueprint for an object. It describes an object’s 
composition by defining state variables, and the object’s behaviors by 
defining methods. Collectively, state variables and methods are called the 
fields of an object. 

In general, a program can create multiple objects of a given class; these 
individual objects are also called instances of a class. Typically, the state 
variables of each instance have distinct values. Although all members of a 
class have the same structure and types of behaviors, the values stored in 
state variables are unique to the instance. Methods, on the other hand, are 
simply lists of operations to perform. All instances of a class share the 
same methods. 

Let’s say we are designing a class to model microwave ovens. Such a class 
would be composed of a magnetron and a timer (among other things), and 
would provide methods for getting the object to do something, such as 
cooking the food. We next show how this class may look in Java. 
Magnetron and Timer are classes defined elsewhere in the program, and 
mag and t are state variables of those types. setTimer and cookMyFood 
are the methods. State variables establish what is called an assembly, or 
“has a,” relationship between classes. In this example, we would say that a 
Microwave “has a” Magnetron and “has a” Timer. This approach is 
analogous to the early AI notion of inheritance reflected in semantic 
networks (Luger 2009, Section 7.1). 

public class Microwave { 

  private Magnetron mag; 

  private Timer t; 

  public void setTimer (Time howLongToCook) {...} 

  public Food cookMyFood (Food coldFood) {...} 

}  

Objects encapsulate their internal workings. A well-designed object does 
not allow other objects to access its internal structure directly. This further 
reinforces the separation of what an object does from how it does it. This 
pays benefits in the maintenance of software: a programmer can change the 
internals of an object, perhaps to improve performance or fix some bug, 
but as long as they do not change the syntax or semantics of the object 
interface, they should not affect its ability to fit into the larger program. 
Think again of the Microwave class (or the oven itself). You don’t touch 
the magnetron. You don’t even have to know what a magnetron is. You 
control the behavior that matters to you by adjusting relevant settings via 
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the interface, and leave the rest to the microwave alone. Java provides the 
access modifiers to control what it exposes to the rest of the program. 
These modifiers can be private, public, and protected, and are described in 
further detail in Section 21.6. 

             21.4 Polymorphism 

 Polymorphism has its roots in the Greek words “polos” meaning many, and 
“morphos” meaning form, and refers to a particular behavior that can be 
defined for different classes of objects. Whether you drive a car or a truck, 
you start it by inserting a key and turning it. Even if you only know how to 
start a car, you can easily start a truck because the interface to both is the 
same. The mechanical and electrical events that occur, when we start a 
truck’s diesel engine say, are different from those of starting a car, but at a 
level of abstraction, the actions are the same.  If we were defining cars and 
trucks in an object-oriented language, we would say that the start method is 
polymorphic across both types of vehicles. 

Java supports polymorphism by allowing different objects to respond to 
different methods with the same name. In other words, two different 
classes can provide method implementations of the same name. Let’s say 
we have two classes, one modeling microwave ovens and the other 
modeling traditional stoves. Both can implement their own 
startCooking method, even if they do so in fundamentally different 
ways, using completely different method codes to do it. 

Polymorphism is one benefit of OOP’s separation of an object’s interface 
from its implementation, and it provides several benefits. It simplifies the 
management of different classes of related types, and lets us write code that 
will work with arbitrary classes at some point in the future. For example, 
we can write a program for controlling a car object, leaving it up to some 
other developer to actually provide the car object itself. Let’s say your code 
makes calls to the car methods turnOn and shiftGear. With such a 
framework, a developer might decide to plug in a truck object instead of a 
car. If the appropriate measures are taken, it can actually work – even 
though we never expected our program to work with trucks. 

The benefits of polymorphism are in simplifying the structure of the 
software by exploiting similarities between classes, and in simplifying the 
addition of new objects to existing code. As a more practical example, 
suppose we want to add a new type of text field to a user interface package. 
Assume this new field only allows users to enter numbers, and ignores 
letter keys. If we give this new text field object the same methods as the 
standard text field (polymorphism), we can substitute it into programs 
without changing the surrounding code. 

This leads to a concept at the heart of both AI and Java: semantics. What is 
it that makes the car object and the truck object semantically similar? How 
do you write code that lets somebody swap a car for a truck? These 
questions introduce the notion of inheritance. 
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             21.5 Inheritance 

 Cars and trucks are both travel vehicles. Traditional stoves and microwave 
ovens are both cooking appliances. To model these relationships in Java, 
we would first create superclasses for the more general, abstract things (travel 
vehicles and cooking appliances). We would then create classes for the 
more specific, concrete things (cars, trucks, stoves and microwave ovens) 
by making them subclasses of the appropriate superclasses. Superclasses and 
subclasses are also referred to as parent classes and child classes, respectively. 

What does this buy us?  Two things: consolidation and reuse. To write a 
class to model a car, and then one to model a truck, it should be obvious 
that there is considerable overlap between the two definitions. Rather than 
duplicating the definition of such common functions like starting, 
stopping, accelerating, and so on, in each object, we can consolidate the 
descriptions in the methods of the more abstract notion of a vehicle. 
Furthermore, we can then use the vehicle superclass to quickly create a 
motorcycle class: motorcycles will inherit the general functionality of a 
vehicle (starting, stopping, etc), but will add those properties that are 
unique to it, such as having two wheels.  

In Java terminology, the classes for each of cars, trucks, and motorcycles 
are said to extend or inherit from the class for vehicle. The code skeletons 
for implementing this inheritance are shown next. In particular, note that 
there is nothing in the Vehicle class that specifies that it is to be used as 
a superclass. This is important, as another developer might at some point 
want to extend our class, even if the desire to do so never entered our 
mind when we originally designed the software. In Java, most classes can 
later be extended to create new subclasses. 

 public class Vehicle  
{ 

 public void start()     /* code defines start*/ 

 public void stop()      /* code defines stop */ 

 public void drive()    /* code defines drive */ 

 public boolean equals (Vehicle a)  

        /* code defines if two vehicles are same */ 

 public int getWheels() { return 4;} 

} 

public class Motorcycle extends Vehicle 

{ 

 public int getWheels() { return 2;}  

                     /* Overrides Vehicle method */ 

} 

public class Car extends Vehicle 

{  

 /* define methods that are unique to Car here */ 

} 
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public class Truck extends Vehicle 

{  

         /*define methods unique to Truck here*/ 

} 

To develop this idea further, imagine that we wanted a class to model 
dump trucks. Again, we have overlap with existing components. Only this 
time, there may be more overlap with the class for trucks than the class for 
travel vehicle. It might make more sense to have dump trucks inherit from 
trucks. Thus, a dump truck is a truck, which is a travel vehicle. Figure 21.1 
illustrates this entire class hierarchy using an inheritance diagram, an 
indispensable design aid.  

We next discuss inheritance-based polymorphism. When we extend a superclass, 
our new subclass inherits all public fields of its parent. Any code that uses 
an object of our subclass can call the public methods or access the public 
state variables it inherited from its parent class. In other words, any 
program written for the superclass can treat our subclass exactly as if it 
were an instance of the superclass.  This capability enables polymorphism 
(Section 21.3), and is crucial for code reuse; it allows us to write programs 
that will work with classes that have not even been written yet.  

The ability to extend most classes with subclasses establishes a semantic 
relationship: we know that dump trucks are trucks, and that trucks are 
travel vehicles, therefore trucks are travel vehicles. Furthermore, we know 
how to start travel vehicles, so we clearly know how to start dump trucks. 
In Java, if the class Vehicle has a method start, then so does the 
class DumpTruck. We next present fragments of code that illustrate how 
polymorphism is enabled by inheritance. 

Since DumpTruck and Car are descendants of Vehicle, variables of type 
Vehicle can be assigned objects of either type: 

Vehicle trashTruck = new DumpTruck();  

Vehicle dreamCar = new Car(); 

Methods that take arguments of type Vehicle can take instances of any 
descendants: 

if (dreamCar.equals(trashTruck)) 

then 

 . . .  

 

Finally, methods that return type travelvehicle can return instances 
of any subclass. The following example illustrates this, and also shows an 
example of the Factory design pattern. A Factory pattern defines a class 
whose function is to return instances of another class, often testing to 
determine variations on those instances. 
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Figure 21.1:  An inheritance diagram of our travelvehicle class hierarchy. 

Arrows denote “extends,” also known as the “is a” relationship. For 
example, a dump truck is a truck, which is a travelvehicle. 

class Vehicle Factory() 

{ 

  public Vehicle getCar(Person customer) 

 { 

  if(customer.job = “Construction”) 

  then return new Truck(); 

  if (customer.job = “Salesman”_ 

  then return new Car(); 

 

  // etc. 

} 

We have seen semantic relationships and type hierarchies before. In 
Section 2.4 we used them to model symbolic knowledge in the form of 
semantic networks and frames. Semantic relationships serve the same 
purpose in Java.  We are using classes to represent things in a hierarchically 
organized way. Java can credit classical AI research as the source of 
modeling knowledge using semantic hierarchies on a computer (see Luger 
2009, Section 7.1). 

Another important aspect of inheritance and polymorphism is the ability to 
give different classes the same methods, but to give them different 
definitions for each class. A common application of this is the ability to 
change a method definition in a descendant. For example, suppose we 
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want to change the start method for a motorcycle from using a starter to a 
simple kick-start. We would still make motorcycle a descendant of 
Automobile, but would redefine the start method: 

class Motorcycle extends Vehicle 

{ 

 public void start()  

 {  

  // Motorcycles use this definition of start  

  // instead of Vehicle’s 

 } 

} 

We make one final point on inheritance. In our class hierarchy, 
DumpTruck has exactly one parent: Truck. That parent has only one 
parent as well: Vehicle. Every class in Java has exactly one parent. What 
is the parent of Vehicle? When a class does not explicitly state which 
class it extends, it automatically inherits from the generic class called 
Object.  

Object is the root of all class hierarchies in Java. This automatic 
inheritance means that every single object in a Java program is, by 
inheritance, an instance of the Object class. This superclass provides 
certain facilities to every single object in a Java program, many of which are 
rarely used directly by the programmer, but which can, in turn, be used by 
other classes in the Java Standard Library. 

In some languages (e.g., C++ and CLOS), classes can inherit from multiple 
parents. This capability is known as multiple inheritance. Java does not 
support multiple inheritance, opting instead for single inheritance. There is 
an ongoing debate between proponents of each approach, primarily related 
to program integrity and inadvertent creation of side effects, but we will 
not go into theses issues here. 

             21.6 Interfaces 

 Up to this point, the word interface has been used to refer to the public 
fields of a class. Here we introduce a special Java construct that also 
happens to be known as an “interface”. Although these concepts are 
related, it is important to distinguish between the two. 

A Java interface is a mechanism for standardizing the method names of 
classes for some purpose. It is effectively a contract that a class can agree 
to. The term of this agreement is that a class will implement at least those 
methods named in the interface definition. 

A Java interface definition consists of the interface name, and a list of 
method names. A class that agrees to implement the methods in an 
interface is said to implement that interface. A class specifies the interfaces 
it implements in the class declaration using an implements clause. If a class 
agrees to implement an interface, but lacks even one of the prescribed 
methods, it won’t even compile. For example, consider the interface: 
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interface Transportation 

{ 

 public int  getPassengerCapacity(); 

 public double getMaximumSpeed(); 

 public double getCost(); 

} 

The definition of the Transportation interface does not define the 
implementation of the methods getPassengerCapacity(), 
getMaximumSpeed(), or getCost(). It only states that any 
instance of Transportation must define these methods. If we had 
changed the definition of the class Automobile to read as follows, then 
we would be required to define the methods of Transportation in 
the class Vehicle. 

class Vehicle implements Transportation 

{  

 . . . 

} 

This feels a bit like inheritance. After all, when we extend a parent class, we 
are promising that all public fields from that parent class are available, 
allowing programs to treat our new class like the parent class. Even if the 
inherited fields are overridden, they are sure to exist. However, there are 
conceptual and practical differences between inheritance and Java 
interfaces. 

What is most important is that interfaces are only a specification of the 
methods in a class. They carry no implementation information. This allows 
us to define “contracts” between classes for how classes should behave 
without concern for their implementation. Suppose, for example, we 
wanted to define a class to manage all our vehicles. This class, which we 
call Fleet, could be defined to manage instances of the interface 
Transportation.  Any class that implemented that interface could be 
in Fleet: 

class Fleet 

{ 

 public void add(Transportation v) 

 { 

  //Define add here 

 } 

 public double getTotalCost() 

 { 

  //sum of getCost on all Transportation 

 } 

} 

This technique will be extremely important in using Java for building AI 
applications, since it allows us to create general tools for searching problem 
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spaces, pattern matching, and so on without knowing what types of spaces 
we will be searching or objects we will be matching. We simply create the 
interface such objects must define, and write our search engines to handle 
those interfaces.  

At the operational level, classes can implement any number of interfaces. 
The methods defined in the interfaces can even overlap. Because the 
implementing class does not actually inherit method implementations from 
the interface, overlap is irrelevant. This gives us many of the benefits of 
multiple inheritance, and yet retains some security from unwanted side 
effects. Finally, interfaces provide another mechanism to enable 
polymorphism. As long as we know that a specific object can perform 
certain operations, we can ask it to do so. 

Interfaces are especially useful when writing frameworks that require some 
specific behavior from objects of some class, but that do not care at all 
about the object’s family. Thus, the framework does not constrain the 
semantic relationships of the class, which may come from a completely 
different developer, and might not have even been written yet. Java 
frameworks that impose such constraints often over-step their boundary, 
particularly when an interface would have been sufficient. 

             21.7 Scoping and Access 

 Java allows programmers to specify the context in which declarations and 
variables have an effect. This context is known as the scope. For example, if 
we declare a variable inside of a method, that variable is only accessible 
within that method. 

Fields declared private are only accessible by methods in the same class; not 
even children of the class can access these fields. Although we often would 
like child classes to be able to access these variables, it is usually good style 
to define all member variables as private, and to provide public 
accessor functions to them. For example: 

public class Foo 

{ 

 private int value; 

 public int getValue() 

 { 

  return value; 

 } 

 public void setValue(int newValue) 

 { 

  value = newValue; 

 } 

} 

The reason for enforcing the private scope of member variables so strongly 
is to maintain the separation of interface and implementation. In the 
previous example, the class Foo does not expose the representation of the 
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variable value. It only makes a commitment to provide such a value 
through accessor functions getValue() and setValue(int 
newValue). This allows programmers to change the internal 
representation of value in subtle ways without affecting child classes. For 
example, we may, at some time, want to have the class Foo notify other 
classes when value changes using Java’s event model. If value were 
public, we could not be sure some external method did not simply assign 
directly to it without such a notification. Using this private variable/public 
accessor pattern makes this easy to guarantee. 

In contrast, protected fields are accessible by inherited methods, and public 
fields are accessible by anybody. As a rule, protected scope should be used 
carefully, as it violates the separation of interface and implementation in 
the parent class. 

Fields declared static are unique to the class, not to the instance. This means 
that there is only a single value of a static variable, and all instances of a 
given class will access that value. Because this creates the potential for 
interesting side-effects, it should be used judiciously. Static methods do not 
require an instance in order to be called. As such, static methods cannot 
access non-static state variables, and have no this variable. 

Another useful modifier is final. You cannot create subclasses of a class that 
is declared final, or override a final method in a subclass. This allows 
the programmer to limit modifications to methods of a parent class. It also 
allows the creation of constants in classes, since variables declared final 
cannot be changed. Generally, final variables are declared static as 
well: 

public class Foo 

{ 

 public static final double pi = 3.1416; 

 . . . 

} 

 

             21.8 The Java Standard Library 

 In pursuing the goal of widespread reuse of software components, Java 
comes prepackaged with a substantial collection of classes and interfaces 
known as the Java Standard Library. This library provides a variety of 
facilities, including priority queues, file I/O, regular expressions, 
interprocess communication, multithreading, and graphical user interface 
components, to name just a few. 

The Java standard library has proven to one of Java’s most strategic assets. 
At a minimum, developers can focus on high-level objects by reusing 
common components, instead of building every application from a few 
basic commands. Using the techniques described above, standardization 
saves developers from having to learn multiple libraries that provide 
identical functionality, which is a common problem with other languages 
for which multiple software vendors distribute their own libraries. The Java 
library continues to grow driven by emerging challenges and technologies. 
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             21.9 Conclusions: Designing in Java 

 As we strive to acquire the Java idiom, and not simply “learn the language”, 
we must begin to think in Java. As stated earlier, Java and OOP emerged 
out of a need to improve the entire process of creating software. More 
than other languages, Java is linked to a particular set of assumptions about 
how it will be used. For example, reuse is an important aspect of this 
approach. When possible, we should not build Java programs from scratch 
using the basic language, but should look for reusable classes in the 
standard libraries, and may even want to consider commercial vendors or 
open source providers for complex functionality. In addition, Java 
programmers should always try to generalize their own code to create 
classes for possible later reuse. 

One intention of object-oriented programming is to simplify later program 
maintenance by organizing code around structures that reflect the structure 
of the problem domain. This not only makes the code easier to understand, 
especially for other programmers, but also tends to reduce the impact of 
future changes. In maintenance, it is important for the change process to 
be reasonable to the customer: change requests that seem small to the 
customer should not take a long time. Because the final user’s estimate of 
the complexity of a requested change reflects her or his own conceptual 
model of the problem, capturing this model in the computer code helps to 
insure a reasonable change process. 

Finally, the ability to create classes that hide their internal structure makes 
Java an ideal language for prototyping (Luger 2009, Section 8.1). We can 
build a program up one class at a time, debugging and testing classes as we 
go. This sort of iterative approach is ideal for the kinds of complex projects 
common to modern AI, and programmers should design classes to support 
such an iterative approach. Guidelines for this approach to programming 
include: 

Try to make the breakdown of the program into classes reflect 
the logical structure of the problem domain. This not only 
involves defining classes to reflect objects in the domain, but 
also anticipating the source of pressures to change the program, 
and making an effort to isolate anticipated changes. 

Always make variables private, and expose public 
methods only as needed. 

Keep methods small and specialized. Java methods almost never 
take more than a full screen of code, with the vast majority 
consisting of less than a dozen lines. 

Use inheritance and interface definitions to “program by 
contract”. This idea extends such useful ideas as strong variable 
typing to allow the programmer to tightly control the 
information passing between objects, further reducing the 
possibility of bugs in the code. 

Finally, we should remember that this is not simply a book on 
programming in Java, but one on AI programming in Java. A primary goal 
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of Artificial Intelligence has always been to find general patterns of 
complex problem solving, and to express them in a formal language. 
Although Java does not offer the clear AI structures found in Lisp and 
Prolog, it does offer the programmer a powerful tool for creating them in 
the form of reusable objects/classes. 

In writing this chapter, we faced a very difficult challenge: how can we 
write a meaningful introduction to so complex a language as Java, without 
falling into the trap of trying to write a full introductory text in the 
language. Our criteria for organizing this chapter was to emphasize those 
features of Java that best support the kinds of abstraction and structuring 
that support the complexity of AI programming. As with Lisp and Prolog, 
we will not approach Java simply as a programming language, but as a 
language for capturing the patterns of AI programming in general, reusable 
ways. 

We should not simply think of Java as a programming language, but as a 
language for creating specialized languages: powerful classes and tools we 
can use to solve our programs. In a very real sense, master Java 
programmers do not program in Java, as much as they use it to define 
specialized languages and packages tailored to solve the various problems 
they face. This technique is called meta-linguistic abstraction, and it is at the 
heart of OOP. Essentially meta-linguistic abstraction means using a base 
language to define a specialized language that is better suited to a particular 
problem.  

Meta-linguistic abstraction is a powerful programming tool that underlies 
many of the examples that follow in later chapters, especially search 
engines, the design of expert systems shells, and control structures for 
genetic algorithms and machine learning. We can think of these generalized 
search strategies, representations, or expert-system shells as specialized 
languages built on the Java foundation. All the features of Java described in 
this chapter, including inheritance, encapsulation, polymorphism, scoping, 
and interfaces serve this goal.  

                         Exercises 

 1. Create an inheritance hierarchy for a heating and air conditioning system 
for a building using centralized heating/cooling sources. Attempt to make 
the overall control parallel and asynchronous. Capture your design with an 
inheritance diagram (see Figure 25.3). 

2. Expand on problem 1, where each floor of the building has a number of 
rooms that need to be heated/cooled. Create a room hierarchy where the 
generic room has a fixed set of attributes and then each individual room 
(office, common room store room) inherits different properties. Each 
room should have its individual controller to communicate with the 
general-purpose heating/cooling system. 

3. Problems 1 and 2 can be even further expanded, where each room has 
its own volume, insulation factor (the area of windows, say), and 
heating/cooling requirements. Suppose you want to design the ultimate 
“green” or conservation-oriented structure. How might you design such a 
building? 
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4. Create an inheritance hierarchy for an elevator control system. Take, for 
example a fifteen-storey building and three elevators. Capture your design 
with an inheritance diagram (see Figure 25.3). 
5. Create Java structure code, similar to that in Sections 21.4.2, 21.5 and 
21.6 for implementing the examples you created in questions you 
considered from exercises 1 - 4. 

6. Consult the Java Library. What software components therein might 
support your program designs for question 3? 

 

 


